Answer:
option a and d
Step-by-step explanation:
[tex] \frac{3}{4} = \frac{2x - 1}{2y + 4} \\ 3(2y + 4) = 4(2x - 1) \\ 6y + 12 = 8x - 4 \\ now \\ 6y = 8x - 4 - 12 \\ 6y = 8x - 16 \\ y = \frac{8x - 16}{6} \\ y = \frac{8x}{6} - \frac{16}{6} \\ y = \frac{4x}{3} - \frac{8}{3} \\ y = \frac{4}{3} x - \frac{8}{3} \\a nd \\ \\ 6y + 12 = 8x - 4 \\ 6y + 12 + 4 = 8x \\ 6y + 16 = 8x \\ \frac{6y + 16}{8} = x \\ \frac{6y}{8} + \frac{16}{8} = x \\ \frac{3y}{4} + 2 = x \\ x = \frac{3}{4} y + 2[/tex]