Respuesta :
Charlie's returns on the investment is an illustration of a geometric sequence.
The recursive function for Charlie's investment is:
[tex](c)\ m(t) = m(t-1) \cdot 1.03,\ \ \ m(1) = 5000[/tex]
Given that:
[tex]m_1 = 5000[/tex] --- the first investment
[tex]r =0.03[/tex] ---- rate
Charlie's investment at the end of each year are as follows
In terms of the given parameters, each term will be represented as: [tex]m_n = m_1 \times r^{n-1}[/tex]
End of the second year
[tex]m_n = m_1 \times r^{n-1}[/tex]
[tex]m_2 = 5000 \times (1.03)^{2 - 1}[/tex]
[tex]m_2 = 5000 \times (1.03)[/tex]
End of the third year
[tex]m_n = m_1 \times r^{n-1}[/tex]
[tex]m_3 = 5000 \times (1.03)^{3-1}[/tex]
[tex]m_3 = 5000 \times (1.03)^{2}[/tex]
Expand
[tex]m_3 = 5000 \times (1.03) \times (1.03)[/tex]
Substitute [tex]m_2 = 5000 \times (1.03)[/tex]
[tex]m_3 = m_2 \times 1.03[/tex]
Express 2 as 3 - 1
[tex]m_3 = m_{3-1} \times 1.03[/tex]
Replace 3 with t, to get the expression for t years
[tex]m_t = m_{t-1} \times 1.03[/tex]
Hence, the correct recursive expression is:
[tex](c)\ m(t) = m(t-1) \cdot 1.03,\ \ \ m(1) = 5000[/tex]
Read more about recursive expressions of geometric sequence at:
https://brainly.com/question/5606637