Answer:
Option D is correct.
The length of AB = [tex]\sqrt{13}[/tex] units.
Explanation:
Use Distance(D) formula for two points (x_1 ,y_1) and (x_2 ,y_2) is given by:
[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
From the given figure in triangle ABC, A =(4,5) and B= (2,2),
then by using distance formula, we have;
AB =[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
AB=[tex]\sqrt{(2-4)^2+(2-5)^2}[/tex] or
AB=[tex]\sqrt{(-2)^2+(-3)^2}[/tex]
or
AB=[tex]\sqrt{(4+9}[/tex] = [tex]\sqrt{13}[/tex]
Therefore, the length of AB = [tex]\sqrt{13}[/tex] unit.