Respuesta :

It would be B.) because from point "e" you go up 3 right 2

Answer : The correct option is, (B) [tex]\frac{3}{2}[/tex]

Step-by-step explanation:

The formula used for slope is:

[tex]m=\frac{(y_2-y_1)}{(x_2-x_1)}[/tex]

where,

m = slope

[tex]x_1[/tex] and [tex]x_2[/tex] are the coordinates of x-axis

[tex]y_1[/tex] and [tex]y_2[/tex] are the coordinates of y-axis

From the graph we conclude that:

[tex]x_1[/tex] and [tex]x_2[/tex] are (-2) and (2) respectively.

[tex]y_1[/tex] and [tex]y_2[/tex] are (-4) and (2) respectively.

Now put all the given values in the above formula of slope, we get:

[tex]m=\frac{(y_2-y_1)}{(x_2-x_1)}[/tex]

[tex]m=\frac{(2-(-4))}{(2-(-2))}[/tex]

[tex]m=\frac{(2+4)}{(2+2)}[/tex]

[tex]m=\frac{6}{4}[/tex]

[tex]m=\frac{3}{2}[/tex]

Therefore, the slope of line segment EF is, [tex]\frac{3}{2}[/tex]