Answer:
1. D. [tex]50\text{ units}^2[/tex]
2. D. 45 units.
Step-by-step explanation:
We have been two graphs.
1. To find the area of our given triangle we will use distance formula.
[tex]\text{Distance}=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Upon substituting coordinates of base line of our triangle we will get,
[tex]\text{Base length of triangle}=\sqrt{(15-5)^2+(5-15)^2}[/tex]
[tex]\text{Base length of triangle}=\sqrt{(10)^2+(-10)^2}[/tex]
[tex]\text{Base length of triangle}=\sqrt{100+100}[/tex]
[tex]\text{Base length of triangle}=\sqrt{200}[/tex]
[tex]\text{Base length of triangle}=10\sqrt{2}[/tex]
Now let us find the height of triangle similarly.
[tex]\text{Height of triangle}=\sqrt{(20-15)^2+(10-5)^2}[/tex]
[tex]\text{Height of triangle}=\sqrt{(5)^2+(5)^2}[/tex]
[tex]\text{Height of triangle}=\sqrt{25+25}[/tex]
[tex]\text{Height of triangle}=\sqrt{50}[/tex]
[tex]\text{Height of triangle}=5\sqrt{2}[/tex]
[tex]\text{Area of triangle}=\frac{\text{Base*Height}}{2}[/tex]
[tex]\text{Area of triangle}=\frac{10\sqrt{2}*5\sqrt{2}}{2}[/tex]
[tex]\text{Area of triangle}=\frac{50*2}{2}[/tex]
[tex]\text{Area of triangle}=50[/tex]
Therefore, area of our given triangle is 50 square units and option D is the correct choice.
2. Using distance formula we will find the length of large side of triangle as:
[tex]\text{Large side of rectangle}=\sqrt{(14-1)^2+(21-8)^2}[/tex]
[tex]\text{Large side of rectangle}=\sqrt{(13)^2+(13)^2}[/tex]
[tex]\text{Large side of rectangle}=\sqrt{169+169}[/tex]
[tex]\text{Large side of rectangle}=\sqrt{338}[/tex]
[tex]\text{Large side of rectangle}=13\sqrt{2}[/tex]
[tex]\text{Small side of rectangle}=\sqrt{(4-1)^2+(5-8)^2}[/tex]
[tex]\text{Small side of rectangle}=\sqrt{(3)^2+(-3)^2}[/tex]
[tex]\text{Small side of rectangle}=\sqrt{9+9}[/tex]
[tex]\text{Small side of rectangle}=\sqrt{18}[/tex]
[tex]\text{Small side of rectangle}=3\sqrt{2}[/tex]
[tex]\text{Perimeter of rectangle}=2(\text{Length + Width)}[/tex]
[tex]\text{Perimeter of rectangle}=2(13\sqrt{2}+3\sqrt{2}}[/tex]
[tex]\text{Perimeter of rectangle}=2(16\sqrt{2}}[/tex]
[tex]\text{Perimeter of rectangle}=32\sqrt{2}[/tex]
[tex]\text{Perimeter of rectangle}=45.2548339959390416\approx 45[/tex]
Therefore, the perimeter of our given rectangle is 45 units and option D is the correct choice.