Respuesta :

We know that the maximum and minimum values of the function y = cos x in the interval [-2π, 2π] are 1 and -1 respectively.
 
The graph of y = 8 cos x is vertical stretch by a factor of 8 units. Therefore the graph y=cos x, = the maximum and minimum values of the function y = cos x in the interval [-2π, 2π]. So they are 8 and -8 respectively.  

max = 8,  ∈[−2π,2π]
                                                    = Solution 
min = −8.  ∈[−2π,2π]

The maximum value of the function (y = 10 cos x ) in the interval [-2[tex]\pi[/tex],2[tex]\pi[/tex]] is 10 and the minimum value of the function (y = 10 cos x ) in the interval [-2[tex]\pi[/tex],2[tex]\pi[/tex]] is -10.

Given :

  • Trigonometric Function -- [tex]\rm y = 10\;cosx[/tex]
  • Interval  ---  [-2[tex]\pi[/tex],2[tex]\pi[/tex]]

The following steps can be used in order to determine the maximum and minimum values of the function (y = 10 cos x) in the interval [-2π, 2π]:

Step 1 - Remember the maximum value of the graph of the function (y = cos x) in the interval [-2[tex]\pi[/tex],2[tex]\pi[/tex]] is 1 and the minimum value of the graph of the function (y = cos x) in the interval [-2[tex]\pi[/tex],2[tex]\pi[/tex]] is -1.

Step 2 - From the above step, it can be said that the maximum value of the function (y = 10 cos x) in the interval [-2[tex]\pi[/tex],2[tex]\pi[/tex]] is 10.

Step 3 - Also from step 1, it can be said that the minimum value of the function (y = 10 cos x) in the interval [-2[tex]\pi[/tex],2[tex]\pi[/tex]] is -10.

For more information, refer to the link given below:

https://brainly.com/question/21286835

ACCESS MORE