Respuesta :

Answer:

[tex]DZ=4\ units[/tex]

Step-by-step explanation:

we know that

If CD is parallel to XZ

then

Triangle XYZ is similar to Triangle YCD

therefore

The ratio of their corresponding sides are equal

[tex]\frac{XY}{CY}=\frac{ZY}{YD}[/tex]

we have

CX=5\ units, CY=25\ units, YD=20\ units,

[tex]XY=CX+CY[/tex]

[tex]XY=5+25=30\ units[/tex]

[tex]ZY=YD+DZ[/tex]

[tex]ZY=20+DZ[/tex]

substitute the values

[tex]\frac{30}{25}=\frac{20+DZ}{20}[/tex]

[tex]20\frac{30}{25}={20+DZ}[/tex]

[tex]24={20+DZ}[/tex]

[tex]DZ=4\ units[/tex]

Answer:

If CX = 5 units, then DZ = 4 units

Step-by-step explanation:

From the figure, it can be seem that CD is parallel to XZ, therefore Triangle XYZ is similar to Triangle YCD.

Using the similarity condition, we have

[tex]\frac{XY}{CY}=\frac{ZY}{YD}[/tex]

[tex]\frac{XC+CY}{CY}= \frac{ZD+DY}{YD}[/tex]

Substituting the given values, we get

[tex]\frac{5+25}{25}=\frac{ZD+20}{20}[/tex]

[tex]\frac{30}{25}=\frac{ZD+20}{20}[/tex]

[tex]\frac{600}{25}=ZD+20[/tex]

[tex]24=ZD+20[/tex]

[tex]ZD=4[/tex]

Thus, the value of ZD is 4 units.