If CX = 5 units, then DZ = ___ units
![If CX 5 units then DZ units class=](https://us-static.z-dn.net/files/d97/e9b91831749e17bf866da3559df7a1d2.png)
Answer:
[tex]DZ=4\ units[/tex]
Step-by-step explanation:
we know that
If CD is parallel to XZ
then
Triangle XYZ is similar to Triangle YCD
therefore
The ratio of their corresponding sides are equal
[tex]\frac{XY}{CY}=\frac{ZY}{YD}[/tex]
we have
CX=5\ units, CY=25\ units, YD=20\ units,
[tex]XY=CX+CY[/tex]
[tex]XY=5+25=30\ units[/tex]
[tex]ZY=YD+DZ[/tex]
[tex]ZY=20+DZ[/tex]
substitute the values
[tex]\frac{30}{25}=\frac{20+DZ}{20}[/tex]
[tex]20\frac{30}{25}={20+DZ}[/tex]
[tex]24={20+DZ}[/tex]
[tex]DZ=4\ units[/tex]
Answer:
If CX = 5 units, then DZ = 4 units
Step-by-step explanation:
From the figure, it can be seem that CD is parallel to XZ, therefore Triangle XYZ is similar to Triangle YCD.
Using the similarity condition, we have
[tex]\frac{XY}{CY}=\frac{ZY}{YD}[/tex]
[tex]\frac{XC+CY}{CY}= \frac{ZD+DY}{YD}[/tex]
Substituting the given values, we get
[tex]\frac{5+25}{25}=\frac{ZD+20}{20}[/tex]
[tex]\frac{30}{25}=\frac{ZD+20}{20}[/tex]
[tex]\frac{600}{25}=ZD+20[/tex]
[tex]24=ZD+20[/tex]
[tex]ZD=4[/tex]
Thus, the value of ZD is 4 units.