Respuesta :
The height (h) of a triangle is 4 in. greater than twice its base (x): h = 2x + 4
The area of the triangle is no more than 168 in.2: A ≤ 168 in²
The area of the triangle is A = x*h/2
Hence x*h/2 ≤ 168 in²
Substitute h in the formula for the area:
h = 2x + 4 = 2(x + 2)
x*h/2 ≤ 168 in²
x * 2(x + 2)/2 ≤ 168
x * (x + 2) ≤ 168
x² + 2x ≤ 168
x² + 2x - 168 ≤ 0
Using the formula for quadratic equation:
[tex]x_{1,2} = \frac{-b+/- \sqrt{ b^{2}-4ac } }{2a} = \frac{-2+/- \sqrt{ 2^{2}-4*1*(-168) } }{2*1}= \frac{-2+/- \sqrt{ 4+672 } }{2}= \\ \\ \frac{-2+/- \sqrt{ 676 } }{2}=\frac{-2+/- 26 }{2} \\ \\ x_1 = \frac{-2+26}{2} = \frac{24}{2} =12 \\ \\ x_1 = \frac{-2-26}{2} = \frac{-28}{2} =-14 [/tex]
Answer:
The actual answer choice is B
Explanation:
Took the quiz on edg and got it right.