Length of the box = 25 - 2x
Width of the box = 14 - 2x
Height of the box = x
a.) Volume of the box = x(25 - 2x)(14 - 2x) = x(350 - 50x - 28x + 4x^2) = 4x^3 - 78x^2 + 350x
Therefore, the function that models the volume of the box is V(x) = 4x^3 - 78x^2 + 350x
b.) 4x^3 - 78x^2 + 350x ≥ 240
4x^3 - 78x + 350x - 240 ≥ 0
x = 0.834, 5.438
The values of x for which the volume is greater than 240 in^3 is 0.834 ≤ x ≤ 5.438
c.) For maximum volume, dV/dx = 0
dV/dx = 12x^2 - 156x + 350 = 0
x = 2.882910931
Therefore, maximum volume = 4(2.882910931)^3 - 78(2.882910931)^2 +350(2.882910931) = 453.798 in^3