Coordinates of B is [tex](\frac{4}{11} ,\frac{13}{11} )[/tex] that divides AC five-sixths of the way from A to C
Given :
AC with A(4.-7) and C(-4, 11), if point B divides AC five-sixths of
the way from A to C
From the given information , B divides AC internally in the ratio of AB to BC is 5:6
Lets apply section formula to find coordinates of B
[tex](\frac{mx_2+nx_1}{m+n} ,\frac{my_2+ny_1}{m+n} )[/tex]
m:n is the ratio 5:6
A is (x1,y1) that is (4,-7)
B is (x2,y2) that is (-4,11)
Substitute the values inside the formula
[tex](\frac{mx_2+nx_1}{m+n} ,\frac{my_2+ny_1}{m+n} )\\(\frac{(5)(-4)+6(4)}{5+6} ,\frac{5(11)+6(-7)}{5+6} )\\(\frac{4}{11} ,\frac{13}{11} )[/tex]
Coordinates of B is [tex](\frac{4}{11} ,\frac{13}{11} )[/tex]
Learn more: brainly.com/question/22493969