Respuesta :
Answer:
[tex]\huge\boxed{\sf -4-\sqrt{17}}[/tex]
Step-by-step explanation:
[tex]\displaystyle \frac{1}{x} = \frac{1}{4-\sqrt{17} }\\\\Multiplying \ and \ dividing \ by \ conjugate \ 4 + \sqrt{17} \\\\= \frac{1}{4-\sqrt{17} } \times \frac{4+\sqrt{17} }{4+\sqrt{17} } \\\\= \frac{4 + \sqrt{17} }{(4)^2-(\sqrt{17} )^2} \ \ \ by \ formula \ (a+b)(a-b)=a^2-b^2\\\\= \frac{4+\sqrt{17} }{16 - 17} \\\\= \frac{4+\sqrt{17} }{-1} \\\\= -(4+\sqrt{17} )\\\\= -4-\sqrt{17} \\\\\rule[225]{225}{2}[/tex]
Hope this helped!
~AH1807
Peace!
Step-by-step explanation:
Given that:
x = 4-√17
Therefore, 1/x = 1/(4-√17)
Now, the denominator is 4-√17
We know that
Rationalising factor of a-√bc is a+√bc.
Therefore, the rationalising factor of 4-√17 is 4+√17.
On rationalising the denominator them
⇛[1/(4-√17)]×[(4+√17)/4+√17)]
⇛[1(4+√17)]/[(4-√17)(4+√17)]
Since, (a-b)(a+b) = a²-b²
Where,
- a = 4 and
- b = √17
⇛[1(4+√17)]/[(4)²-(√17)²]
⇛[1(4+√17)]/(4*4)-√(17*17)]
⇛[4+√17]/[16 - 17]
⇛(4+√17)/1
⇛1/x = 4+√17 ans.
Read more:
Similar questions
Rationalisie the denominator of: 2/√7+√5
https://brainly.com/question/25274590?referrer
