Answer:
The equation [tex]kw^{2} -mw=s[/tex] solved for [tex]w[/tex].
[tex]w=[/tex] [tex]$\frac{m\pm\sqrt{m^{2}+4 k s}}{2 k}$[/tex]
Step-by-step explanation:
Given:
[tex]kw^{2} -mw=s[/tex]
To solve the given equation for [tex]w[/tex].
[tex]kw^{2} -mw=s[/tex]
[tex]kw^2-mw-s=0[/tex]
Using Quadratic formula,
[tex]$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$[/tex]
Comparing the equation [tex]kw^{2} -mw-s=0[/tex] with the formula,
[tex]x=w[/tex]
[tex]b=m[/tex]
[tex]a=k[/tex]
[tex]c=s[/tex]
[tex]w=[/tex] [tex]$\frac{m\pm\sqrt{m^{2}+4 k s}}{2 k}$[/tex]
Learn more about Quadratic formula, refer: