can some one help me with geometric sequence?

Answer:
See below
Step-by-step explanation:
We have the series
[tex]$\sum _{ n=0 }^{ \infty }{ 3(0.8)^n}$[/tex]
(a) To show that the sum of first [tex]n[/tex] terms is [tex]S_n= 15(1-0.8^n)[/tex]
Consider that the this sum is given as
[tex]S_n = 3\dfrac { 1-{ r }^n}{ 1-r }[/tex]
In this case, the ratio is 0.8, thus, [tex]r=0.8[/tex]
[tex]S_n = 3\dfrac { 1-{ 0.8 }^n }{ 1-0.8 }[/tex]
[tex]3\dfrac { 1-{ 0.8 }^{ n } }{ 1-0.8 } = 15(1-0.8^n) \iff 3(1-{ 0.8 }^{ n }) = 15(1-0.8^n)( 1-0.8) \iff 3 = 15(1-0.8) \iff 3 = 15-12 = 3[/tex]
Therefore,
[tex]S_n = 3\dfrac { 1-{ 0.8 }^n }{ 1-0.8 } = 15(1-0.8^n)[/tex]
[tex]\dfrac{S_6}{S_4} = \dfrac{15(1-0.8^6)}{15(1-0.8^4)} = \dfrac{(1-0.8^6)}{(1-0.8^4)} = \dfrac{0.737856}{0.5904} = \dfrac{737856}{5904} = \dfrac{144\cdot 5124}{144\cdot 41} = \boxed{\dfrac{5124}{41} }[/tex]
(b) Calculate the smallest integer value of [tex]n[/tex] such that [tex]S_{40} -S_n < \dfrac{1}{2}[/tex]
Once [tex]S_{40} \approx 15 \text{ and } S_n>14.5, \text{ thus } S_{40} \approx S_n, \text{ but } n \text{ is considerably smaller than 40}[/tex]
I am considering [tex]S_{40}=15[/tex], so
[tex]15-15(1-0.8^n) < \dfrac{1}{2} \implies 0.8^n < 0.03 \implies n> 15.71[/tex]
[tex]\text{Once } n\in\mathbb{Z}, \text{ then } n=16[/tex]