Answer:
[tex]y = \frac{3}{2} x + 2[/tex]
Step-by-step explanation:
In the slope-intercept form y= mx +b, m is the slope and b is the y- intercept.
[tex]\boxed{slope = \frac{y1 - y2}{x1 - x2} } [/tex]
Using the formula above,
[tex]slope = \frac{5 - ( - 4)}{2 - ( - 4)} [/tex]
[tex]m = \frac{5 + 4}{2 + 4} [/tex]
[tex]m = \frac{9}{6} [/tex]
[tex]m = \frac{3}{2} [/tex]
Substitute the value of m into the equation:
[tex]y = \frac{3}{2} x + b[/tex]
To find the value of b, substitute a pair of coordinates into the equation.
When x= 2, y= 5,
[tex]5 = \frac{3}{2} (2) + b[/tex]
5= 3 +b
b= 5 -3
b= 2
Thus, the equation of the line is [tex]y = \frac{3}{2} x + 2[/tex].