Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the identities

1 - cos²x = sin²x

cotx = [tex]\frac{cosx}{sinx}[/tex] , cosecx = [tex]\frac{1}{sinx}[/tex]

Consider the left side

[tex]\frac{1}{1-cos\alpha }[/tex] - [tex]\frac{1}{1+cos\alpha }[/tex]

= [tex]\frac{1+cos\alpha - (1-cos\alpha )}{(1-cos\alpha )(1+cos\alpha )}[/tex]

= [tex]\frac{1+cos\alpha -1+cos\alpha }{1-cos^2\alpha }[/tex]

= [tex]\frac{2cos\alpha }{sin^2\alpha }[/tex]

= [tex]\frac{2cos\alpha }{sin\alpha }[/tex] × [tex]\frac{1}{sin\alpha }[/tex]

= 2cotα . cosecα

= right side , thus verified

ACCESS MORE
EDU ACCESS
Universidad de Mexico