suppose an object traveling in a straight line has a velocity function given by v(t)= t^2 -8t+ 15 km/hr. Find the displacement and distance traveled by the object from t=2 to t=4 hours.

Respuesta :

v=t^2-8t+15

  • It has upper limit 4 and lower limit 2

[tex]\boxed{\sf {\displaystyle{\int}^b_a}x^ndx=\left[\dfrac{x^{n+1}}{n+1}\right]^b_a}[/tex]

[tex]\\ \sf\longmapsto s={\displaystyle{\int}}vdt[/tex]

[tex]\\ \sf\longmapsto s={\displaystyle{\int^4_2}}t^2-8t+15[/tex]

[tex]\\ \sf\longmapsto s=\left[\dfrac{t^3}{3}-8\dfrac{t^2}{2}+15t\right]^4_2[/tex]

[tex]\\ \sf\longmapsto s=\left[\dfrac{t^3}{3}-4t^2+15t\right]^4_2[/tex]

[tex]\\ \sf\longmapsto s=\left(\dfrac{4^3}{3}-4(4)^2+15(4)\right)-\left(\dfrac{2^3}{3}-4(2)^2+15(2)\right)[/tex]

[tex]\\ \sf\longmapsto s=\left(\dfrac{64}{3}-64+60\right)-\left(\dfrac{8}{3}-16+30\right)[/tex]

[tex]\\ \sf\longmapsto s=\left(\dfrac{64}{3}-4\right)-\left(\dfrac{8}{3}+14\right)[/tex]

[tex]\\ \sf\longmapsto s=\dfrac{64}{3}-4-\dfrac{8}{3}-14[/tex]

[tex]\\ \sf\longmapsto s=\dfrac{64}{3}-\dfrac{8}{3}-4-14[/tex]

[tex]\\ \sf\longmapsto s=\dfrac{46}{3}-18[/tex]

[tex]\\ \sf\longmapsto s=15.3-18[/tex]

  • Take it +ve

[tex]\\ \sf\longmapsto s=|-2.7|[/tex]

[tex]\\ \sf\longmapsto s=2.7km[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico