Any vector can be written as a unit vector multiplied by the magnitude of the vector (a positive scalar). Write each of the following vectors as the magnitude of the vector times the appropriate unit vector:
a. ( 0.00330, 0, -0.00330)
b. (0, -676, 0)
c. (0.00316, 0, -0.00316)

Respuesta :

The correct magnitude of the vector times the appropriate unit vector of given vectors are given as follows:

a. <0.708, 0, -0.708> [tex]*4.66*10^{-3}[/tex]

b. <0, -1, 0>*676

c. [tex]\overrightarrow{C} = <0.707, 0, -0.707>*4.47*10^2[/tex]

The general vector can be represented as:

[tex]\underset{A}{\rightarrow}[/tex] = (a, b, c) ......1

the magnitude [tex]| \right\underset{A}{\rightarrow} |[/tex] can be obtained as :

[tex]| \right\underset{A}{\rightarrow} | = \sqrt{a^{2}+ b^{2} +c^{2} }[/tex] .....2

and unit vector would be:

[tex]\hat{u}_A=\dfrac{\overrightarrow{A}}{|\overrightarrow{A}|}[/tex].......3

Solution:

a) ( 0.00330, 0, -0.00330)

here,

[tex]\underset{A}{\rightarrow} = ( 0.00330, 0, -0.00330)[/tex]

applying this magnitude to equation two:

[tex]| \right\underset{A}{\rightarrow} | = \sqrt{0.00330^{2}+ 0^{2} +(-0.00330)^{2} }[/tex] = [tex]4.66*10^{-3}[/tex]

the unit vector would be:

[tex]\hat{u}_A=\dfrac{\overrightarrow{A}}{|\overrightarrow{A}|}[/tex]

[tex]\hat{u}_A= < \frac{0.00330}{4.66*10^{-3}}, \frac{0}{4.66*10^{-3}}, \frac{-0.00330}{4.66*10^{-3}}>[/tex]

[tex]\hat{u}_A= <708, 0, -708>[/tex]

Thus, the vector [tex]{\overrightarrow{A}[/tex] would be - <0.708, 0, -0.708> [tex]*4.66*10^{-3}[/tex]

B) (0, -676, 0)

Solving simailarly like A),

Vector [tex]| \right\underset{B}{\rightarrow} | = \sqrt{0^{2}+ -676^{2} +0^{2} }[/tex] = 676

the unit vector would be:

[tex]\hat{u}_B=\dfrac{\overrightarrow{B}}{|\overrightarrow{B}|}\\\hat{u}_B= < \frac{0}{676}, \frac{-676}{676}, \frac{0}{676}>[/tex]

Thus,  the vector [tex]\overrightarrow{B}[/tex] = <0, -1, 0>*676

C) (0.00316, 0, -0.00316)

Attempting the third vector similarly we will get magnitude:

[tex]| \right\underset{C}{\rightarrow} | = \sqrt{0.00316^{2}+ 0^{2} +(-0.00316)^{2} }[/tex] = [tex]*4.47*10^{-3}[/tex]

Then,

[tex]\hat{u}_C=\dfrac{\overrightarrow{C}}{|\overrightarrow{C}|}\\\hat{u}_C= < \frac{0.00316}{4.47*10^2}, \frac{0}{4.47*10^2}, \frac{0.00316}{4.47*10^2}>[/tex]

The vector [tex]\overrightarrow{C} = <0.707, 0, -0.707>*4.47*10^2[/tex]

Learn more about vector unit:

https://brainly.com/question/1615741

RELAXING NOICE
Relax