I bet you're talking about column vectors,
[tex]\begin{bmatrix}-5\\4\\5\end{bmatrix}, \begin{bmatrix}2\\-1\\5\end{bmatrix},\text{ and }\begin{bmatrix}-17\\16\\45\end{bmatrix}[/tex]
If these vectors are linearly independent, this means that
[tex]c_1 \begin{bmatrix}-5\\4\\5\end{bmatrix} + c_2 \begin{bmatrix}2\\-1\\5\end{bmatrix} + c_3 \begin{bmatrix}-17\\16\\45\end{bmatrix} = \begin{bmatrix}0\\0\\0\end{bmatrix}[/tex]
only if [tex]c_1=c_2=c_3=0[/tex].
In matrix form, we can write this as a system of linear equations,
[tex]\begin{bmatrix}-5&2&-17\\4&-1&16\\5&5&45\end{bmatrix}\begin{bmatrix}c_1\\c_2\\c_3\end{bmatrix} = \begin{bmatrix}0\\0\\0\end{bmatrix}[/tex]
This system has a potentially non-zero solution so long as the coefficient matrix is not singular.
Compute the determinant:
[tex]\begin{vmatrix}-5&2&-17\\4&-1&16\\5&5&45\end{vmatrix} = -5 \begin{vmatrix}-1&16\\5&45\end{vmatrix} - 4 \begin{vmatrix}2&-17\\5&45\end{vmatrix} + 5 \begin{vmatrix}2&-17\\-1&16\end{vmatrix} \\\\ \begin{vmatrix}-5&2&-17\\4&-1&16\\5&5&45\end{vmatrix} = -5(-45-80) - 4(90+85) + 5(32-17) \\\\ \begin{vmatrix}-5&2&-17\\4&-1&16\\5&5&45\end{vmatrix} = 0[/tex]
The coefficient matrix is singular, so there is no non-zero solution to the system, and in turn the given vectors are linearly dependent.