m∠ABC = (9x + 4)° and m∠DEF = (13x − 22)°. If ∠ABC and ∠DEF are supplementary, what is the measure of each angle?

Respuesta :

Answer:

∠ABC measures 85° and ∠DEF measures 95°.

Step-by-step explanation:

We are given that ∠ABC and ∠DEF are supplementary. Then by definition:

[tex]\displaystyle m\angle ABC + m\angle DE F = 180^\circ[/tex]

Substitute:

[tex]\displaystyle \left(9x+4\right) + \left(13x-22\right) = 180[/tex]

Solve for x. Combine like terms:

[tex]22x -18 = 180[/tex]

Add:

[tex]\displaystyle 22x = 198[/tex]

And divide. Hence:

[tex]\displaystyle x = 9[/tex]

To find the measure of ∠ABC, substitute and evaluate:

[tex]\displaystyle \begin{aligned}m\angle ABC &= 9x + 4 \\ &= 9(9) + 4 \\ &= 81 + 4 \\ &= 85^\circ \end{aligned}[/tex]

And:

[tex]\displaystyle \begin{aligned}m\ngle DE F &= 13x - 22 \\ &= 13(9) - 22 \\ &= 117-22 \\&= 95^\circ \end{aligned}[/tex]

In conclusion, ∠ABC measures 85° and ∠DEF measures 95°.

ACCESS MORE