Ronnie can buy invitations in packages of 12 and envelopes in packages of 10. Ronnie bought the fewest number of invitations and envelopes so that there is exactly one envelope per invitation with none left over. How many packages of invitations and how many packages of envelopes did Ronnie buy? Enter your answers in the boxes. packages of invitations packages of envelopes

Respuesta :

Answer:

5---6

Step-by-step explanation:

Given, the package of invitations contain [tex]12[/tex] invitations and package of envelopes contain [tex]10[/tex] envelopes.

Let [tex]x[/tex] and [tex]y[/tex] denote the number of invitation packages bought by Ronnie respectively.

It is given that, Ronnie bought the fewest number of invitations and envelopes so that there is exactly one envelope per invitation with none left over.

That is,[tex]12x-10y=0[/tex].

When, [tex]x=1[/tex] the value of [tex]y[/tex] becomes [tex]1.2[/tex].

It is not possible, since the number package cannot be in decimals.

When, [tex]x=2[/tex] the value of [tex]y[/tex] becomes [tex]2.4[/tex].

This is not possible, since the number package cannot be in decimals.

When, [tex]x=3[/tex] the value of [tex]y[/tex] becomes [tex]3.6[/tex].

This is not possible, since the number package cannot be in decimals.

When, [tex]x=4[/tex] the value of [tex]y[/tex] becomes [tex]4.8[/tex].

This is not possible, since the number package cannot be in decimals.

When, [tex]x=5[/tex] the value of [tex]y[/tex] becomes [tex]6[/tex].

This is not possible, since the number package cannot be in decimals.

Thus, Ronnie bought [tex]5[/tex] packages invitations and [tex]6[/tex] packages envelopes so that there is exactly one envelope per invitation with none left over.

ACCESS MORE