Answer:
B
Step-by-step explanation:
According to the Factor Theorem, if (x - a) is a factor (where a is a zero) of the polynomial P(x), then P(a) must equal zero.
Our zeros are 4, √7, and - √7. Hence, when evaluating P(4), P(√7), and P(-√7), all must evaluate to zero.
Testing each choice, we can see that only choice B is true. That is:
[tex]\displaystyle \displaystyle \begin{aligned} f(4)&= (4)^3 - 4(4)^2 - 7(4) + 28 \\ &= (64) - (64) - (28) + 28 \\ &= 0 \stackrel{\checkmark}{=}0 \\f(\sqrt{7}) &= (\sqrt{7})^3 - 4(\sqrt{7})^2 - 7(\sqrt{7}) + 28 \\ &= (7\sqrt{7}) - (28) - (7\sqrt{7}) + 28 \\ &= 0 \stackrel{\checkmark}{=} 0\\ f(-\sqrt{7}) &= (-\sqrt{7})^3 - 4(-\sqrt{7})^2 - 7(-\sqrt{7}) + 28 \\ &= (-7\sqrt{7}) - (28) + (7\sqrt{7}) + 28 \\ &= 0 \stackrel{\checkmark}{=} 0 \end{aligned}[/tex]
In conclusion, our answer is B.