Respuesta :

Answer:

[tex]\sup(S) = 3[/tex].

[tex]\displaystyle \inf(S) = \frac{1}{3}[/tex].

Step-by-step explanation:

When factored, [tex]3\,x^{2} - 10\, x + 3[/tex] is equivalent to [tex](3\, x - 1)\, (x - 3)[/tex].

[tex]3\, x^{2} - 10\, x + 3 < 0[/tex] whenever [tex]\displaystyle x \in \left(\frac{1}{3},\, 3\right)[/tex].

Typically, the supremum and infimum of open intervals are the two endpoints. In this question, [tex]\sup(S) = 3[/tex] whereas [tex]\displaystyle \inf(S) = \frac{1}{3}[/tex].

Below is a proof of the claim that [tex]\sup(S) = 3[/tex]. The proof for [tex]\displaystyle \inf(S) = \frac{1}{3}[/tex] is similar.

In simple words, the supremum of a set is the smallest upper bound of that set. (An upper bound of a set is greater than any element of the set.)

It is easy to see that [tex]3[/tex] is an upper bound of [tex]S[/tex]:

  • For any [tex]x > 3[/tex], [tex]3\,x^{2} - 10\, x + 3 > 0[/tex]. Hence, any number that's greater than [tex]3\![/tex] could not be a member [tex]S[/tex].
  • Conversely, [tex]3[/tex] would be greater than all elements of [tex]S\![/tex] and would thus be an upper bound of this set.

To see that [tex]3[/tex] is the smallest upper bound of [tex]S[/tex], assume by contradiction that there exists some [tex]\epsilon > 0[/tex] for which [tex](3 - \epsilon)[/tex] (which is smaller than [tex]3\![/tex]) is also an upper bound of [tex]S\![/tex].

The next step is to show that [tex](3 - \epsilon)[/tex] could not be a lower bound of [tex]S[/tex].

There are two situations to consider:

  • The value of [tex]\epsilon[/tex] might be very large, such that [tex](3 - \epsilon)[/tex] is smaller than all elements of [tex]S[/tex].
  • Otherwise, the value of [tex]\epsilon[/tex] ensures that [tex](3 - \epsilon) \in S[/tex].

Either way, it would be necessary to find (or construct) an element [tex]z[/tex] of [tex]S[/tex] such that [tex]z > 3 - \epsilon[/tex].

For the first situation, it would be necessary that [tex]\displaystyle 3 - \epsilon \le \frac{1}{3}[/tex], such that [tex]\displaystyle \epsilon \ge \frac{8}{3}[/tex]. Let [tex]z := 1[/tex] (or any other number between [tex](1/3)[/tex] and [tex]3[/tex].)

  • Apparently [tex]\displaystyle 1 > \frac{1}{3} \ge (3 - \epsilon)[/tex].
  • At the same time, [tex]1 \in S[/tex].
  • Hence, [tex](3 - \epsilon)[/tex] would not be an upper bound of [tex]S[/tex] when [tex]\displaystyle \epsilon \ge \frac{8}{3}[/tex].

With the first situation [tex]\displaystyle \epsilon \ge \frac{8}{3}[/tex] accounted for, the second situation may assume that [tex]\displaystyle 0 < \epsilon < \frac{8}{3}[/tex].

Claim that  [tex]\displaystyle z:= \left(3 - \frac{\epsilon}{2}\right)[/tex] (which is strictly greater than [tex](3 - \epsilon)[/tex]) is also an element of [tex]S[/tex].

  • To verify that [tex]z \in S[/tex], set [tex]x := z[/tex] and evaluate the expression: [tex]\begin{aligned} & 3\, z^{2} - 10\, z + 3 \\ =\; & 3\, \left(3 - \frac{\epsilon}{2}\right)^{2} - 10\, \left(3 - \frac{\epsilon}{2}\right) + 3 \\ = \; &3\, \left(9 - 3\, \epsilon - \frac{\epsilon^{2}}{4}\right) - 30 + 5\, \epsilon + 3 \\ =\; & 27 - 9\, \epsilon - \frac{3\, \epsilon^{2}}{4} - 30 + 5\, \epsilon + 3 \\ =\; & \frac{3}{4}\, \left(\epsilon\left(\frac{16}{3} - \epsilon\right)\right)\end{aligned}[/tex].
  • This expression is smaller than [tex]0[/tex] whenever [tex]\displaystyle 0 < \epsilon < \frac{16}{3}[/tex].
  • The assumption for this situation [tex]\displaystyle 0 < \epsilon < \frac{8}{3}[/tex] ensures that [tex]\displaystyle 0 < \epsilon < \frac{16}{3}\![/tex] is indeed satisfied.
  • Hence, [tex]\displaystyle 3\, z^{2} - 10\, z + 3 < 0[/tex], such that [tex]z \in S[/tex].
  • At the same time, [tex]z > (3 - \epsilon)[/tex]. Hence, [tex](3 - \epsilon)[/tex] would not be an upper bound of [tex]S[/tex].

Either way, [tex](3 - \epsilon)[/tex] would not be an upper bound of [tex]S[/tex]. Contradiction.

Hence, [tex]3[/tex] is indeed the smallest upper bound of [tex]S[/tex]. By definition, [tex]\sup(S) = 3[/tex].

The proof for [tex]\displaystyle \inf(S) = \frac{1}{3}[/tex] is similar and is omitted because of the character limit.

ACCESS MORE