Respuesta :

Tasyha

Answer:

[tex] \frac{dy}{dx} = - \frac{ {x}^{3} }{ {y}^{3} } [/tex]

Step-by-step explanation:

Differentiate both sides of the equation (consider y as a function of x).

[tex] \frac{d}{dx} ( {x}^{4} + {y}^{4} (x)) = \frac{d}{dx} (16)[/tex]

the derivative of a sum/difference is the sum/difference of derivatives.

[tex]( \frac{d}{dx} ( {x}^{4} + {y}^{4} (x))[/tex]

[tex] = ( \frac{d}{dx} ( {x}^{4} ) + \frac{d}{dx} ( {y}^{4} (x)))[/tex]

the function of y^4(x) is the composition of f(g(x)) of the two functions.

the chain rule:

[tex] \frac{d}{dx} (f(g(x))) = \frac{d}{du} (f(u)) \frac{d}{dx} (g(x))[/tex]

[tex] = ( \frac{d}{du} ( {u}^{4} ) \frac{d}{dx} (y(x))) + \frac{d}{dx} ( {x}^{4} )[/tex]

apply the power rule:

[tex](4 {u}^{3} ) \frac{d}{dx} (y(x)) + \frac{d}{dx} ( {x}^{4} )[/tex]

return to the old variable:

[tex]4(y(x) {)}^{3} \frac{d}{dx} (y(x)) + \frac{d}{dx} ( {x}^{4} )[/tex]

apply the power rule once again:

[tex]4 {y}^{3} (x) \frac{d}{dx} (y(x)) + (4 {x}^{3} )[/tex]

simplify:

[tex]4 {x}^{3} + 4 {y}^{3} (x) \frac{d}{dx} (y(x))[/tex]

[tex] = 4( {x}^{3} + {y}^{3} (x) \frac{d}{dx} (y(x)))[/tex]

[tex] = \frac{d}{dx} ( {x}^{4} + {y}^{4} ))[/tex]

[tex] = 4( {x}^{3} + {y}^{3} (x) \frac{d}{dx}(y(x))) [/tex]

differentiate the equation:

[tex]( \frac{d}{dx} (16)) = (0)[/tex]

[tex] = \frac{d}{dx} (16) = 0[/tex]

derivative:

[tex]4 {x}^{3} + 4 {y}^{3} \frac{dy}{dx} = 0[/tex]

[tex] \frac{dy}{dx} = - \frac{ {x}^{3} }{ {y}^{3} } [/tex]

ACCESS MORE