Respuesta :
Answer:
[tex]\boxed {\boxed {\sf \sqrt{218} \ or \ 14.76}}[/tex]
Step-by-step explanation:
The formula for calculating the distance between 2 points is:
[tex]d= \sqrt{(x_2-x_1)^2 +(y_2-y_1)^2[/tex]
In this formula, (x₁, y₁) and (x₂, y₂) are the 2 points. The 2 points we are given are (-4, 6) and (3, -7). If we match the value with the corresponding variable we see that:
- x₁ = -4
- y₁ = 6
- x₂ = 3
- y₂ = -7
Substitute the values into the formula.
[tex]d= \sqrt{(3 - -4)^2 + (-7-6)^2[/tex]
Solve inside the parentheses.
- (3--4) = (3+4) = 7
- (-7-6) = -13
[tex]d=\sqrt {(7)^2 + (-13)^2[/tex]
Solve the exponents.
- (7)²= 7*7 = 49
- (-13)² = -13 * -13 = 169
[tex]d= \sqrt{ (49)+(169)[/tex]
Add.
[tex]d= \sqrt{218}[/tex]
[tex]d=14.76482306[/tex]
If we round to the nearest hundredth place, the 4 in the thousandth place tells us to leave the 6.
[tex]d \approx 14.76[/tex]
The distance between the points (-4, 6) and (3, -7) is √218 or approximately 14.76.