Respuesta :

Answer:

[tex]\huge\boxed{\sf SG = 31}[/tex]

Step-by-step explanation:

Given:

SW = 3x + 1

WA = 6x

AG = x + 6

SW = AG

Required:

Length of SG = ?

Solution:

Given that:

SW = AG

3x + 1 = x + 6

Combining like terms

3x - x = 6 - 1

2x = 5

x = 5/2

x = 2.5

Now,

SG = SW + WA + AG

SG = 3x + 1 + 6x + x + 6

SG = 3x + 6x + x + 1 + 6

SG = 10x + 6

Put x = 2.5

SG = 10(2.5) + 6

SG = 25 + 6

SG = 31

[tex]\rule[225]{225}{2}[/tex]

Hope this helped!

~AH1807

Peace!