Answer:
OK, so I thought I could solve this but now I'm not so sure. I got [tex]\sqrt{x^{2}+4}[/tex] = [tex]\sqrt{x^{2}+4}[/tex] but this whole thing is such a huge mess I have no idea if it's right or wrong. I tried my best to get it right and I hope this helps.
Step-by-step explanation:
First, let's simplify the left side:
let's make (x + 3) = a and (x + 2) = b
so a · b or ab =
Now let's solve for a:
ab = [tex]\sqrt{x^{2}+4}[/tex]
ab/b = ([tex]\sqrt{x^{2}+4}[/tex]) / b
a = ([tex]\sqrt{x^{2}+4}[/tex]) / b
Now we can substitute a:
[([tex]\sqrt{x^{2}+4}[/tex]) / b] · b = [tex]\sqrt{x^{2}+4}[/tex]
{[([tex]\sqrt{x^{2}+4}[/tex]) / b] · b} / [([tex]\sqrt{x^{2}+4}[/tex]) / b] = ([tex]\sqrt{x^{2}+4}[/tex]) / [([tex]\sqrt{x^{2}+4}[/tex]) / b}
b = ([tex]\sqrt{x^{2}+4}[/tex]) / [([tex]\sqrt{x^{2}+4}[/tex]) / b]
Now we can substitute a and b:
[([tex]\sqrt{x^{2}+4}[/tex]) / b] · ([tex]\sqrt{x^{2}+4}[/tex]) / [([tex]\sqrt{x^{2}+4}[/tex]) / b] = [tex]\sqrt{x^{2}+4}[/tex]
[tex]\sqrt{x^{2}+4}[/tex] = [tex]\sqrt{x^{2}+4}[/tex]