Respuesta :

Answer:

OK, so I thought I could solve this but now I'm not so sure. I got [tex]\sqrt{x^{2}+4}[/tex] = [tex]\sqrt{x^{2}+4}[/tex] but this whole thing is such a huge mess I have no idea if it's right or wrong. I tried my best to get it right and I hope this helps.

Step-by-step explanation:

First, let's simplify the left side:

let's make (x + 3) = a and (x + 2) = b

so a · b or ab =

Now let's solve for a:

ab = [tex]\sqrt{x^{2}+4}[/tex]

ab/b = ([tex]\sqrt{x^{2}+4}[/tex]) / b

a = ([tex]\sqrt{x^{2}+4}[/tex]) / b

Now we can substitute a:

[([tex]\sqrt{x^{2}+4}[/tex]) / b] · b = [tex]\sqrt{x^{2}+4}[/tex]

{[([tex]\sqrt{x^{2}+4}[/tex]) / b] · b} / [([tex]\sqrt{x^{2}+4}[/tex]) / b] = ([tex]\sqrt{x^{2}+4}[/tex]) / [([tex]\sqrt{x^{2}+4}[/tex]) / b}

b =  ([tex]\sqrt{x^{2}+4}[/tex]) / [([tex]\sqrt{x^{2}+4}[/tex]) / b]

Now we can substitute a and b:

[([tex]\sqrt{x^{2}+4}[/tex]) / b] · ([tex]\sqrt{x^{2}+4}[/tex]) / [([tex]\sqrt{x^{2}+4}[/tex]) / b] = [tex]\sqrt{x^{2}+4}[/tex]

[tex]\sqrt{x^{2}+4}[/tex] = [tex]\sqrt{x^{2}+4}[/tex]

ACCESS MORE