Respuesta :

Answer:

[tex]\boxed {\boxed {\sf ( -9, \frac{11}{2}) }}[/tex]

Step-by-step explanation:

We are asked to find the midpoint of a segment. We essentially calculate the average of the x-coordinates and the y-coordinates using the following formula.

[tex]( \frac {x_1+x_2}{2}, \frac{ y_1 + y_2}{2})[/tex]

In this formula, (x₁ , y₁) and (x₂ , y₂) are the endpoints of the segment. For this problem, the 2 endpoints are (-12, 12) and (-6, -1). If we match the variable and the corresponding value, we see that:

  • x₁= -12
  • y₁= 12
  • x₂ = -6
  • y₂ = -1

Substitute the values into the formula.

[tex]( \frac{-12 + -6}{2}, \frac{12 + -1} {2} )[/tex]

Solve the numerators.

  • -12 + -6 = -12 -6 = -18
  • 12 + -1 = 12-1 = 11

[tex]( \frac{-18}{2}, \frac{11}{2})[/tex]

Divide.

[tex]( -9, \frac{11}{2} )[/tex]

The midpoint of the segment is [tex]\bold {( -9, \frac{11}{2} )}[/tex].

ACCESS MORE