11) MZHGF = 16x + 4, m EGF = 110°,
and MZHGE = 3x + 11. Find x.
G
H
F
E
![11 MZHGF 16x 4 m EGF 110 and MZHGE 3x 11 Find x G H F E class=](https://us-static.z-dn.net/files/d3d/6bf3dce575bd5d9bf8b1a203db15f364.png)
=======================================================
Explanation:
The smaller angles HGE and EGF combine to form the largest angle HGF.
This is an example of the angle addition postulate.
(angle HGE) + (angle EGF) = angle HGF
(3x+11) + (110) = 16x+4
3x+121 = 16x+4
121-4 = 16x-3x
117 = 13x
13x = 117
x = 117/13
x = 9 which is the final answer
We can stop here.
--------------------
Extra info (optional section)
Use this x value to find each angle shown below
Then notice how,
(angle HGE)+(angle EGF) = 38+110 = 148
which is exactly the measure of angle HGF
This confirms that the equation
(angle HGE) + (angle EGF) = angle HGF
is true for that x value of x = 9. Therefore, the answer is confirmed.
9514 1404 393
Answer:
11) x = 9°
13) x = -12°
Step-by-step explanation:
11) ∠HGE +∠EGF = ∠HGF
(3x +11) +(110°) = (16x +4)
117° = 13x . . . . . . . . . . . . . . . subtract 3x+4, collect terms
9° = x . . . . . . . . . . . . divide by 13
__
13) ∠BCF +∠FCD = ∠BCD
(x +78) +(x +41) = 95°
2x = -24°
x = -12°