Midpoint has coordinates [tex](x_m,y_m)[/tex] which equal to,
[tex]x_m=\frac{x_1+x_2}{2}[/tex]
[tex]y_m=\frac{y_1+y_2}{2}[/tex]
We know the coordinates of a midpoint as well as the coordinates of [tex]A(x_1,y_1)[/tex] so we should be able to find coordinates of [tex]B(x_2,y_2)[/tex].
First solve both equations for [tex]x_2[/tex] and [tex]y_2[/tex] respectively,
[tex]x_2=2x_m-x_1[/tex]
[tex]y_2=2y_m-y_1[/tex]
Now insert the data,
[tex]x_2=2\cdot1-(-3)=\boxed{5}[/tex]
[tex]y_2=2\cdot2-6=\boxed{-2}[/tex]
The coordinates of B are therefore [tex](5,-2)[/tex].
Hope this helps :)