Answer:
No they aren't equivalent.
Step-by-step explanation:
x^3x^3x^3=x^3^3^3
[tex](x)^{3x^{3x^3[/tex]=[tex]x^{3^{3^3[/tex]
[tex]x^{3x^{9x}[/tex]=[tex]x^{3^{9}[/tex]
[tex]x^{27x^{2} }[/tex]=[tex]x^{27}[/tex]
Apply log on both sides
27[tex]x^{2}[/tex]logx=27logx
27[tex]x^{2}[/tex]logx/27logx=1
[tex]x^{2}[/tex]=1
This is true if x=1 , -1.
The values are equivalent if x=1 and -1 , otherwise no they aren't equivalent.