Respuesta :

Answer:

No they aren't equivalent.

Step-by-step explanation:

x^3x^3x^3=x^3^3^3

[tex](x)^{3x^{3x^3[/tex]=[tex]x^{3^{3^3[/tex]

[tex]x^{3x^{9x}[/tex]=[tex]x^{3^{9}[/tex]

[tex]x^{27x^{2} }[/tex]=[tex]x^{27}[/tex]

Apply log on both sides

27[tex]x^{2}[/tex]logx=27logx

27[tex]x^{2}[/tex]logx/27logx=1

[tex]x^{2}[/tex]=1

This is true if x=1 , -1.

The values are equivalent if x=1 and -1 , otherwise no they aren't equivalent.