Help please.
Simplify: 2 + 3i / 4 + 2i

Answer:
○ [tex]\displaystyle \frac{7 + 4i}{10}[/tex]
Step-by-step explanation:
[tex]\displaystyle \frac{2 + 3i}{4 + 2i} → \frac{2 + 3i[4 - 2i]}{4 + 2i[4 - 2i]} = \frac{14 + 8i}{20} = \boxed{\frac{7}{10} + \frac{2}{5}i}[/tex]
When dividing complex numbers, multiply the denominatour and numeratour by the conjugate of the denominatour. Then simply towards the end.
* Here is something you should know:
[tex]\displaystyle \sqrt{-1} = i \\ -1 = i^2 \\ -i = i^3 \\ 1 = i^4\: [every\:multiple\:of\:four][/tex]
I am joyous to assist you at any time.