pllllllllllzzzzzzzzzz heeeelllllllllppppppp
![pllllllllllzzzzzzzzzz heeeelllllllllppppppp class=](https://us-static.z-dn.net/files/d04/3d60c100b2dfa4cce2476ca6d10ac074.png)
![pllllllllllzzzzzzzzzz heeeelllllllllppppppp class=](https://us-static.z-dn.net/files/dac/353abf01e6b0ec7d87446c2088b13941.png)
as its a isosceles triangle Base angles are equal
[tex]\\ \rm\Rrightarrow m<A=m<C[/tex]
[tex]\\ \rm\Rrightarrow m<C=70°[/tex]
Now using angle sum property
[tex]\\ \rm\longmapsto m<A+m<B+m<C=180[/tex]
[tex]\\ \rm\longmapsto 70+70+m<B=180[/tex]
[tex]\\ \rm\longmapsto m<B+140=180[/tex]
[tex]\\ \rm\longmapsto m<B=180-140[/tex]
[tex]\\ \rm\longmapsto m<B=40[/tex]
Answer:
B
Step-by-step explanation:
Since the triangle is isosceles then the 2 base angles are congruent, that is
∠ A = ∠ C = 70° , then
∠ B = 180° - (70 + 70)° = 180° - 140° = 40° → B