Respuesta :

Nayefx

Answer:

[tex] \displaystyle 6({3}^{n} - 1)- 4( {2}^{n} - 1 ) [/tex]

Step-by-step explanation:

we would like to evaluate the following sum of geometric series:

[tex] \displaystyle \sum_{k = 1}^n (4 \cdot {3}^{k} - {2}^{k + 1}) [/tex]

to do so recall the Substracting property of partial sum Thus,

[tex] \displaystyle \sum_{k = 1}^n (4 \cdot {3}^{k} )- \sum_{k = 1}^n({2}^{k + 1}) [/tex]

rewrite $2^{k+1}$ as 2•2^k:

[tex] \displaystyle \sum_{k = 1}^n (4 \cdot {3}^{k} )- \sum_{k = 1}^n({2}^{k } \cdot 2) [/tex]

utilize constant property of partial sum:

[tex] \displaystyle 4\sum_{k = 1}^n ({3}^{k} )- 2\sum_{k = 1}^n({2}^{k } ) [/tex]

factor out 2:

[tex] \displaystyle 2 \left(2\sum_{k = 1}^n ({3}^{k} )- \sum_{k = 1}^n({2}^{k } ) \right)[/tex]

calculate the sum:

[tex] \displaystyle 2 \left( \frac{ 6({3}^{n} - 1)}{2} - 2( {2}^{n} - 1 ) \right)[/tex]

distribute:

[tex] \displaystyle \boxed{6({3}^{n} - 1)- 4( {2}^{n} - 1 ) }[/tex]

and we're done:

ACCESS MORE