Respuesta :
[tex]\boxed{\sf \dfrac{a^m}{a^n}=a^{m-n}}[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{16x^4-24x^3+3}{4x^2+3}[/tex]
- Take 4x^2+3 common out
[tex]\\ \rm\Rrightarrow 4x^2+3\left(\dfrac{4x^2-24x+1}{1}\right)[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{4x^2-24x+1}{1}[/tex]
[tex]\\ \rm\Rrightarrow 4x^2-24x+1[/tex]
Answer:
4x² - 24x + 1
Step-by-step explanation:
[tex]\frac{16x^{4}-24x^{3}+3}{4x^{2}+3}[/tex]
~Factor out the denominator and apply quotient rule [ a^b / a^c = a^b-c ]
[tex]4x^{2}+3 (\frac{\frac{16}{4} x^{4-2}-24x^{3-2}+\frac{3}{3} }{1})[/tex]
[tex]\frac{4x^{2}-24x+1}{1}[/tex]
~Divide everything by 1
[tex]4x^{2} -24x+1[/tex]
Best of Luck!