Respuesta :

Divide through everything by b :

[tex]\dfrac{a+c}{b+d} = \dfrac{\dfrac ab + \dfrac cb}{1 + \dfrac db}[/tex]

Since a/b < c/d, it follows that

[tex]\dfrac{a+c}{b+d} < \dfrac{\dfrac cd+\dfrac cb}{1 + \dfrac db}[/tex]

Multiply through everything on the right side by b/d to get

[tex]\dfrac{a+c}{b+d} < \dfrac{\dfrac{bc}{d^2}+\dfrac cd}{\dfrac bd+1} = \dfrac{\dfrac cd\left(\dfrac bd+1\right)}{\dfrac bd+1} = \dfrac cd[/tex]

and so (a + c)/(b + d) < c/d.

For the other side, you can do something similar and divide through everything by d :

[tex]\dfrac{a+c}{b+d} = \dfrac{\dfrac ad + \dfrac cd}{\dfrac bd + 1}[/tex]

and a/b < c/d tells us that

[tex]\dfrac{a+c}{b+d} > \dfrac{\dfrac ad + \dfrac ab}{\dfrac bd + 1}[/tex]

Then

[tex]\dfrac{a+c}{b+d} > \dfrac{\dfrac ab + \dfrac{ad}{b^2}}{1 + \dfrac db} = \dfrac{\dfrac ab\left(1+\dfrac db\right)}{1 + \dfrac db} = \dfrac ab[/tex]

and so (a + c)/(b + d) > a/b.

Then together we get the desired inequality.

ACCESS MORE