4. In the diagram, ABCD is a straight line. Calculate the values of x and y.
![4 In the diagram ABCD is a straight line Calculate the values of x and y class=](https://us-static.z-dn.net/files/d2a/b6725d5001c58aeb3c50906987576e16.jpg)
Answer:
x is 108° and y is 144°
Step-by-step explanation:
for x:
[tex] x + 36 \degree + 36 \degree = 180 \degree \\ \{isoceles \: triangle \: angle \: sum \} \\ x + 72 \degree = 180 \degree \\ x = 180 \degree - 72 \degree \\ x = 108 \degree[/tex]
for y:
[tex]y + 36 \degree = 180 \degree \\ \{straight \: line \: angles \} \\ y = 180\degree - 36\degree \\ y = 144\degree[/tex]
Answer:
X+36+36=180
X+72=180
X=180-72
X=108
36+BC^D=180
BC^D=180-36
BC^D=144
BC^D corresponds with y
Therefore y=144