Respuesta :

Answer:

cross multiplication would be the quickest technique that works to visualize this set of questions..

if [tex]\frac{a}{b} = \frac{c}{d}[/tex]  then ad = bc

each item that does not have a denominator add a "1" as the denominator

so first item... [tex]\frac{sin(50)}{1} = \frac{x}{4}[/tex]  

[tex]\frac{4 * sin(50) }{1} = x[/tex]     x = [tex]4\sin \left(50^{\circ \:}\right)=3.06417\dots[/tex]

#b) [tex]3\tan \left(81^{\circ \:}\right)=18.94125[/tex]

#c) [tex]6\cos \left(33^{\circ \:}\right)=5.03202[/tex]

.

.

#g)[tex]7.1\tan \left(18.4^{\circ \:}\right)=2.36185[/tex]

Step-by-step explanation:

Answer:

First we extract the sin or the tan according to the question and multiply the number with the denominator and extract the x .

a)

[tex] \sin(50) = \frac{x}{4} \\ 0.766 = \frac{x}{4} \\ x = 3.06[/tex]

b)

[tex] \tan(81) = \frac{x}{3} \\ 6.31 = \frac{x}{3} \\ x = 18.93[/tex]

C)

[tex] \cos(33) = \frac{x}{6} \\ 0.83 = \frac{x}{6} \\ x = 0.83 \times 6 \\ x = 4.98[/tex]

d)

[tex] \cos(75 ) = \frac{x}{3.5} \\ 0.258 = \frac{x}{3.5} \\ x = 0.2588 \times 3.5 \\ x = 0.90[/tex]

e)

[tex] \sin(24) = \frac{x}{4.2} \\ 0.406 = \frac{x}{4.2} \\ x = 0.406 \times 4.2 \\ x = 1.70 [/tex]

f)

[tex] \tan(42) = \frac{x}{10} \\ 0.9 = \frac{x}{10} \\ x = 9[/tex]

g)

[tex] \frac{x}{7.1} = \tan(18.4) \\ \frac{x}{7.1} = 0.33 \\ x = 0.33 \times 7.1 \\ x = 2.34[/tex]

h)

[tex] \frac{x}{5.3} = \sin(64.7) \\ \frac{x}{5.3} = 0.9 \\ x = 4.77[/tex]

i)

[tex] \frac{x}{12.6} = \cos(52.9) \\ \frac{x}{12.6} = 0.6 \\ x = 0.6 \times 12.6 \\ x = 7.56[/tex]

I hope I helped you^_^