Answer:
(2, -9)
Step-by-step explanation:
f(x) = (x + 1)(x - 5)
[tex] =f(x) = {x}^{2} - 5x + x - 5[/tex]
[tex] = f(x) = {x}^{2} - 4x - 5[/tex]
[tex] = f(x) = {1x}^{2} - 4x - 5[/tex]
[tex] = f(x) = {1x}^{2} + ( - 4x) - 5[/tex]
= a = 1, b = -4
[tex] = x = \frac{ - 4}{2 \times 1} [/tex]
[tex] = x = - \frac{ - 4}{2} [/tex]
[tex] = x - ( - 2)[/tex]
[tex] = x = 2[/tex]
= f(x) = (x + 1) x (x - 5); x = 2
= f(2) = -9
= (2, -9)