Respuesta :

Given the function w:

[tex] \displaystyle \large{w(x) = {x}^{2} + 1 }[/tex]

Since we want to find w(x+3), the input would be x+3.

Substitute x = x+3 in.

[tex] \displaystyle \large{w(x + 3) = {(x + 3)}^{2} + 1 }[/tex]

Alternate Solution

The answer above works if you want it in vertex form. For this alternate solution, I will convert the function in standard form.

As we know:

[tex] \displaystyle \large{ {(x + y)}^{2} = {x}^{2} + 2xy + {y}^{2} }[/tex]

Therefore:

[tex] \displaystyle \large{ {(x + 3)}^{2} = {x}^{2} + 2(x)(3) + {3}^{2} } \\ \displaystyle \large{ {(x + 3)}^{2} = {x}^{2} + 6x+ 9}[/tex]

Now for function w:

[tex] \displaystyle \large{w(x + 3) = {x}^{2} + 6x + 9+ 1 } \\ \displaystyle \large{w(x + 3) = {x}^{2} + 6x + 10}[/tex]

Hence:

  • The answer is w(x+3) = (x+3)^2+1 for vertex form
  • OR w(x+3) = x^2+6x+10
ACCESS MORE