The orthogonal decomposition of vector [tex]\vec b = <9, 0, 0>[/tex] with respect to vector [tex]\vec a = <4, -5, 0>[/tex] is
[tex]b'=<\frac{16}{5},\frac{8}{5},0>[/tex]
From the Question we are told that
Vector [tex]\vec b = <9, 0, 0>[/tex]
Vector [tex]\vec a = <4, -5, 0>[/tex]
Generally in the orthogonal decomposition of b to a we have
[tex]\vec b=\vec b"+\vec b'[/tex]
Where
[tex]\vec b"=(\frac{\vec b*\vec a}{\vec *\vec a})*\vec a[/tex]
[tex]\vec b"=(\frac{ <9, 0, 0>*<4, -5, 0>}{<4, -5, 0>*<4, -5, 0>})*<4, -5, 0>[/tex]
[tex]\vec b"=<\frac{4}{5},\frac{-8}{5},0>[/tex]
Therefore
[tex]b'= \vec b- \vec b"\\\\b'=<4,0,0>-<\frac{4}{5},\frac{-8}{5},0>[/tex]
[tex]b'=<\frac{16}{5},\frac{8}{5},0>[/tex]
in Conclusion
The orthogonal decomposition of vector [tex]\vec b = <9, 0, 0>[/tex] with respect to vector [tex]\vec a = <4, -5, 0>[/tex] is
[tex]b'=<\frac{16}{5},\frac{8}{5},0>[/tex]
For more information on this visit
https://brainly.com/question/17412861