Find the orthogonal decomposition of vector b = 9, 0, 0 with respect to vector a = 4, −5, 0 . (Your instructors prefer angle bracket notation < > for vectors.)

Respuesta :

The orthogonal decomposition of vector [tex]\vec b = <9, 0, 0>[/tex] with respect to vector [tex]\vec a = <4, -5, 0>[/tex]  is

[tex]b'=<\frac{16}{5},\frac{8}{5},0>[/tex]

From the Question we are told that

Vector [tex]\vec b = <9, 0, 0>[/tex]

Vector [tex]\vec a = <4, -5, 0>[/tex]

Generally in the orthogonal decomposition of b to a we have

[tex]\vec b=\vec b"+\vec b'[/tex]

Where

[tex]\vec b"=(\frac{\vec b*\vec a}{\vec *\vec a})*\vec a[/tex]

[tex]\vec b"=(\frac{ <9, 0, 0>*<4, -5, 0>}{<4, -5, 0>*<4, -5, 0>})*<4, -5, 0>[/tex]

[tex]\vec b"=<\frac{4}{5},\frac{-8}{5},0>[/tex]

Therefore

[tex]b'= \vec b- \vec b"\\\\b'=<4,0,0>-<\frac{4}{5},\frac{-8}{5},0>[/tex]

[tex]b'=<\frac{16}{5},\frac{8}{5},0>[/tex]

in Conclusion

The orthogonal decomposition of vector [tex]\vec b = <9, 0, 0>[/tex] with respect to vector [tex]\vec a = <4, -5, 0>[/tex]  is

[tex]b'=<\frac{16}{5},\frac{8}{5},0>[/tex]

For more information on this visit

https://brainly.com/question/17412861

ACCESS MORE