Find mZWVT.
T
U
7x +11)
V
(14x+7)
(3x + 4)º
W
A. 40
OB. 53
OC.50
OD. 45
![Find mZWVT T U 7x 11 V 14x7 3x 4º W A 40 OB 53 OC50 OD 45 class=](https://us-static.z-dn.net/files/d82/202883555803825f6a4c0f89d5e86a19.png)
Answer:
[tex]\huge\boxed{\sf <WVT = 40\°}[/tex]
Step-by-step explanation:
According to one of the tangent-secant theorems,
∠WVT = [tex]\frac{1}{2} (arc\ TW-arc\ UW)[/tex]
Given that:
∠WVT = (3x + 4)°
arc TW = (14x + 7)°
arc UW = (7x + 11)°
Solution:
3x + 4 = 1/2 (14x + 7 - (7x + 11))
3x + 4 = 1/2 (14x + 7 - 7x - 11)
3x + 4 = 1/2 ( 7x - 4 )
Multiply both sides by 2
2 ( 3x + 4 ) = 7x - 4
6x + 8 = 7x - 4
Combining like terms
7x - 6x = 8 + 4
x = 12
Finding ∠WVT:
∠WVT = (3x + 4)°
∠WVT = (3(12)+4)°
∠WVT = (36+4)°
∠WVT = 40°
[tex]\rule[225]{225}{2}[/tex]
Hope this helped!