Respuesta :

Answer:

[tex]\huge\boxed{\sf <WVT = 40\°}[/tex]

Step-by-step explanation:

According to one of the tangent-secant theorems,

∠WVT = [tex]\frac{1}{2} (arc\ TW-arc\ UW)[/tex]

Given that:

∠WVT = (3x + 4)°

arc TW = (14x + 7)°

arc UW = (7x + 11)°

Solution:

3x + 4 = 1/2 (14x + 7 - (7x + 11))

3x + 4 = 1/2 (14x + 7 - 7x - 11)

3x + 4 = 1/2 ( 7x - 4 )

Multiply both sides by 2

2 ( 3x + 4 ) = 7x - 4

6x + 8 = 7x - 4

Combining like terms

7x - 6x = 8 + 4

x = 12

Finding ∠WVT:

∠WVT = (3x + 4)°

∠WVT = (3(12)+4)°

∠WVT = (36+4)°

∠WVT = 40°

[tex]\rule[225]{225}{2}[/tex]

Hope this helped!

~AH1807

Peace!

ACCESS MORE