Answer:
The correlation coefficient is approximately -0.9949
Step-by-step explanation:
The given data is presented as follows;
[tex]\begin{array}{lcl}x&&y\\-10&&2\\-8&&-3\\-1&&-15\\-4&&-10\\-6&&-6\\-7&&-5\\-5&&-8\\-3&&-13\\-2&&-14\\-9&&-1\end{array}[/tex]
The correlation coefficient, r is given as follows;
[tex]r = \dfrac{\sum(x_i - \overline x) \cdot (y_i - \overline y)}{\sqrt{\sum (x_i- \overline x)^2\times \sum (y_i- \overline y)^2 } }[/tex]
From MS Excel, we have;
∑([tex]x_i - \overline x[/tex])·([tex]y_i - \overline y[/tex]) = -155.5
∑([tex]x_i - \overline x[/tex])² = 82.5
∑([tex]y_i - \overline y[/tex])² = 296.1
Therefore, r = -155.5/(√(82.5 × 296.1)) ≈ -0.9949
The correlation coefficient, r ≈ -0.9949