Respuesta :
Answer:
The maximum value of f(x) occurs at:
[tex]\displaystyle x = \frac{2a}{a+b}[/tex]
And is given by:
[tex]\displaystyle f_{\text{max}}(x) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b[/tex]
Step-by-step explanation:
Answer:
Step-by-step explanation:
We are given the function:
[tex]\displaystyle f(x) = x^a (2-x)^b \text{ where } a, b >0[/tex]
And we want to find the maximum value of f(x) on the interval [0, 2].
First, let's evaluate the endpoints of the interval:
[tex]\displaystyle f(0) = (0)^a(2-(0))^b = 0[/tex]
And:
[tex]\displaystyle f(2) = (2)^a(2-(2))^b = 0[/tex]
Recall that extrema occurs at a function's critical points. The critical points of a function at the points where its derivative is either zero or undefined. Thus, find the derivative of the function:
[tex]\displaystyle f'(x) = \frac{d}{dx} \left[ x^a\left(2-x\right)^b\right][/tex]
By the Product Rule:
[tex]\displaystyle \begin{aligned} f'(x) &= \frac{d}{dx}\left[x^a\right] (2-x)^b + x^a\frac{d}{dx}\left[(2-x)^b\right]\\ \\ &=\left(ax^{a-1}\right)\left(2-x\right)^b + x^a\left(b(2-x)^{b-1}\cdot -1\right) \\ \\ &= x^a\left(2-x\right)^b \left[\frac{a}{x} - \frac{b}{2-x}\right] \end{aligned}[/tex]
Set the derivative equal to zero and solve for x:
[tex]\displaystyle 0= x^a\left(2-x\right)^b \left[\frac{a}{x} - \frac{b}{2-x}\right][/tex]
By the Zero Product Property:
[tex]\displaystyle x^a (2-x)^b = 0\text{ or } \frac{a}{x} - \frac{b}{2-x} = 0[/tex]
The solutions to the first equation are x = 0 and x = 2.
First, for the second equation, note that it is undefined when x = 0 and x = 2.
To solve for x, we can multiply both sides by the denominators.
[tex]\displaystyle\left( \frac{a}{x} - \frac{b}{2-x} \right)\left((x(2-x)\right) = 0(x(2-x))[/tex]
Simplify:
[tex]\displaystyle a(2-x) - b(x) = 0[/tex]
And solve for x:
[tex]\displaystyle \begin{aligned} 2a-ax-bx &= 0 \\ 2a &= ax+bx \\ 2a&= x(a+b) \\ \frac{2a}{a+b} &= x \end{aligned}[/tex]
So, our critical points are:
[tex]\displaystyle x = 0 , 2 , \text{ and } \frac{2a}{a+b}[/tex]
We already know that f(0) = f(2) = 0.
For the third point, we can see that:
[tex]\displaystyle f\left(\frac{2a}{a+b}\right) = \left(\frac{2a}{a+b}\right)^a\left(2- \frac{2a}{a+b}\right)^b[/tex]
This can be simplified to:
[tex]\displaystyle f\left(\frac{2a}{a+b}\right) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b[/tex]
Since a and b > 0, both factors must be positive. Thus, f(2a / (a + b)) > 0. So, this must be the maximum value.
To confirm that this is indeed a maximum, we can select values to test. Let a = 2 and b = 3. Then:
[tex]\displaystyle f'(x) = x^2(2-x)^3\left(\frac{2}{x} - \frac{3}{2-x}\right)[/tex]
The critical point will be at:
[tex]\displaystyle x= \frac{2(2)}{(2)+(3)} = \frac{4}{5}=0.8[/tex]
Testing x = 0.5 and x = 1 yields that:
[tex]\displaystyle f'(0.5) >0\text{ and } f'(1) <0[/tex]
Since the derivative is positive and then negative, we can conclude that the point is indeed a maximum.
Therefore, the maximum value of f(x) occurs at:
[tex]\displaystyle x = \frac{2a}{a+b}[/tex]
And is given by:
[tex]\displaystyle f_{\text{max}}(x) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b[/tex]
