Respuesta :
The height of the motorcycle daredevil when it reaches the landing ramp is 4.93 m.
Since the ramp is a 33.0° ramp and the motorcycle daredevil jumps off with a speed of 20.3 m/s, the motorcycle dare devil has a horizontal component of speed u = 20.3cos33.0° m/s and a vertical component of speed v = 20.3sin33.0° m/s.
Now, since the other ramp is d = 28.0 m away, it takes the time it takes the motorcycle dare devil to reach it is t.
Considering motion in the horizontal direction, d = ut.
Thus, t = d/u
= 28.0 m/20.3cos33.0° m/s
= 28.0 m/(20.3 × 0.8387) m/s
= 28.0 m/17.025 m/s
= 1.645 s
Let h be the height of the motorcycle daredevil when it reaches the landing ramp in time, t.
Considering the vertical motion and using h = vt - 1/2gt² where v = vertical velocity of motorcycle daredevil = 20.3sin33.0°, t = time taken to reach landing ramp = 1.645 s and g = acceleration due to gravity = 9.8 m/s² (Note that there is a negative in front of g since it is directed downwards)
So, substituting the values of the variables into the equation, we have
h = vt - 1/2gt²
h = 20.3sin33.0° m/s × 1.645 s - 1/2 × 9.8 m/s² × (1.645 s)²
h = 20.3 × 0.5446 m/s × 1.645 s - 1/2 × 9.8 m/s² × 2.706025 s²
h = 18.187 m - 1/2 × 26.519 m
h = 18.187 m - 13.26 m
h = 4.927
h ≅ 4.93 m
So, the height of the motorcycle daredevil when it reaches the landing ramp is 4.93 m.
Learn more about ramps here:
https://brainly.com/question/20113308