Suppose a certain study reported that 27.7% of high school students smoke.
Random samples are selected from high school that has 632 students.
(i) If a random sample of 60 students is selected, what is the probability that
fewer than 19 of the students smoke?
(ii) If a random sample of 75 students is selected, what is the probability that
more than 17 of the students smoke?

Respuesta :

The correct answer of the question is "0.7062" and "0.835". The further solution is provided below.

Given:

Probability of student smoke,

P = 27.7%

  = 0.277

Number of students (n) = 632

[tex]q = 1-p[/tex]

  [tex]=1-0.277[/tex]

  [tex]=0.723[/tex]

(i)

Here,

Number of students (n) = 60

then,

⇒ [tex]n_P=60\times 0.277[/tex]

         [tex]=16.62[/tex]

⇒ [tex]n_q=60\times 0.723[/tex]

        [tex]=43.38[/tex]

We can see that [tex]n_P > 10[/tex] and [tex]n_q>10[/tex] so the normal approximation condition are met.

Now,

[tex]\mu = n_P= 16.62[/tex]

[tex]\sigma = \sqrt{n_{Pq}}[/tex]

  [tex]= \sqrt{60\times 0.277\times 0.723}[/tex]

  [tex]=3.9664[/tex]

Now,

⇒ [tex]P(X<19) = P(X<18.5)[/tex]

                      [tex]=P(Z_{18.5})[/tex]

The Z-score is:

= [tex]\frac{18.5-16.62}{3.4664}[/tex]

= [tex]0.5423[/tex]

hence,

The probability will be:

⇒ [tex]P(Z_{18.5}) = 0.7062[/tex]

or,

⇒ [tex]P(Z<19) = 0.7062[/tex]

(ii)

Here,

Number of students (n) = 75

[tex]\mu = n_P = 75\times 0.277[/tex]

            [tex]=20.775[/tex]

[tex]\sigma = \sqrt{n_{Pq}}[/tex]

   [tex]=\sqrt{75\times 0.277\times 0.723}[/tex]

   [tex]=3.8756[/tex]

Now,

⇒ [tex]P(X>17) = P(X> 17.5)[/tex]

                      [tex]=1-P(X \leq 17.5)[/tex]

                      [tex]=1-P(Z_{17.5})[/tex]

The Z-score is:

= [tex]\frac{17.5-20.775}{3.8756}[/tex]

= [tex]-0.9740[/tex]

then, [tex]P(Z_{17.5}) = 0.165[/tex]

hence,

The probability will be:

⇒ [tex]P(X>17) = 1-0.165[/tex]

                      [tex]=0.835[/tex]    

Learn more about Probability here:

https://brainly.com/question/9825651

RELAXING NOICE
Relax