The question is incomplete. The complete question is :
The base of an aluminum block, which is fixed in place, measures 90 cm by 90 cm, and the height of the block is 60 cm. A force, applied to the upper face and parallel to it, produces a shear strain of 0.0060. The shear modulus of aluminum is [tex]3.0 \times 10^{10} \ Pa[/tex] . What is the displacement of the upper face in the direction of the applied force?
Solution :
The relation between shear modulus, shear stress and strain,
[tex]$\text{Shear modulus, S =} \frac{\text{Shear stress}}{\text{shear strain}}$[/tex]
Shear stress = shear modulus (S) x shear strain
[tex]$=3 \times 10^{10} \times 0.0060$[/tex]
[tex]$=1.80 \times 10^8$[/tex] Pa
[tex]$=180 \times 10^6$[/tex] Pa
[tex]$=180 \ MPa$[/tex]
The length represents the distance between the fixed in place portion and where the force is being applied.
Therefore,
[tex]$\text{Displacement} = \text{shear strain} \times \text{length}$[/tex]
= 0.006 x 60 cm
= 0.360 cm
= 3.6 mm
Thus, the displacement of the upper face is 3.6 mm in the direction of the applied force.