Answer: [tex]7\dfrac{24}{40}\ kg[/tex]
Step-by-step explanation:
Given
Edward bought [tex]49 \frac{9}{20}\ kg[/tex]
he distributes [tex]16\frac{3}{5}\ kg[/tex] in first trip
In second trip [tex]7\frac{4}{8}\ kg[/tex]
In third trip, it is [tex]17\frac{3}{4}\ kg[/tex]
Subtract the sum of first three trips from the total to get the last trip guavas
and convert mixed fraction to fractions
[tex]\Rightarrow 49\dfrac{9}{20}-[16\dfrac{3}{5}+7\dfrac{4}{8}+17\dfrac{3}{4}] \\\\\Rightarrow 49+\dfrac{9}{20}-16-7-17-[\dfrac{3}{5}+\dfrac{4}{8}+\dfrac{3}{4}]\\\\\Rightarrow 9+\dfrac{9}{20}-\dfrac{24+20+30}{40}\\\\\Rightarrow 9+\dfrac{18-74}{40}\\\\\Rightarrow 9-\dfrac{56}{40}\\\\\Rightarrow \dfrac{360-56}{40}\\\\\Rightarrow \dfrac{304}{40}\ or\ 7\dfrac{24}{40}\ kg[/tex]
Thus, [tex]7\frac{24}{40}\ kg[/tex] of guavas are left for the last trip.