The differential equation
[tex]y^{(4)}-n^2y'' = g(x)[/tex]
has characteristic equation
r ⁴ - n ² r ² = r ² (r ² - n ²) = r ² (r - n) (r + n) = 0
with roots r = 0 (multiplicity 2), r = -1, and r = 1, so the characteristic solution is
[tex]y_c=C_1+C_2x+C_3e^{-nx}+C_4e^{nx}[/tex]
For the non-homogeneous equation, reduce the order by substituting u(x) = y''(x), so that u''(x) is the 4th derivative of y, and
[tex]u''-n^2u = g(x)[/tex]
Solve for u by using the method of variation of parameters. Note that the characteristic equation now only admits the two exponential solutions found earlier; I denote them by u₁ and u₂. Now we look for a particular solution of the form
[tex]u_p = u_1z_1 + u_2z_2[/tex]
where
[tex]\displaystyle z_1(x) = -\int\frac{u_2(x)g(x)}{W(u_1(x),u_2(x))}\,\mathrm dx[/tex]
[tex]\displaystyle z_2(x) = \int\frac{u_1(x)g(x)}{W(u_1(x),u_2(x))}\,\mathrm dx[/tex]
where W (u₁, u₂) is the Wronskian of u₁ and u₂. We have
[tex]W(u_1(x),u_2(x)) = \begin{vmatrix}e^{-nx}&e^{nx}\\-ne^{-nx}&ne^{nx}\end{vmatrix} = 2n[/tex]
and so
[tex]\displaystyle z_1(x) = -\frac1{2n}\int e^{nx}g(x)\,\mathrm dx[/tex]
[tex]\displaystyle z_2(x) = \frac1{2n}\int e^{-nx}g(x)\,\mathrm dx[/tex]
So we have
[tex]\displaystyle u_p = -\frac1{2n}e^{-nx}\int_0^x e^{n\xi}g(\xi)\,\mathrm d\xi + \frac1{2n}e^{nx}\int_0^xe^{-n\xi}g(\xi)\,\mathrm d\xi[/tex]
and hence
[tex]u(x)=C_1e^{-nx}+C_2e^{nx}+u_p(x)[/tex]
Finally, integrate both sides twice to solve for y :
[tex]\displaystyle y(x)=C_1+C_2x+C_3e^{-nx}+C_4e^{nx}+\int_0^x\int_0^\omega u_p(\xi)\,\mathrm d\xi\,\mathrm d\omega[/tex]