Respuesta :

Answer:  [tex]-2+\sqrt{3}[/tex]

=========================================================

Work Shown:

Apply the following trig identity

[tex]\tan(A - B) = \frac{\tan(A)-\tan(B)}{1+\tan(A)*\tan(B)}\\\\\tan(225 - 60) = \frac{\tan(225)-\tan(60)}{1+\tan(225)*\tan(60)}\\\\\tan(165) = \frac{1-\sqrt{3}}{1+1*\sqrt{3}}\\\\\tan(165) = \frac{1-\sqrt{3}}{1+\sqrt{3}}\\\\[/tex]

Now let's rationalize the denominator

[tex]\tan(165) = \frac{1-\sqrt{3}}{1+\sqrt{3}}\\\\\tan(165) = \frac{(1-\sqrt{3})(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})}\\\\\tan(165) = \frac{(1-\sqrt{3})^2}{(1)^2-(\sqrt{3})^2}\\\\\tan(165) = \frac{(1)^2-2*1*\sqrt{3}+(\sqrt{3})^2}{(1)^2-(\sqrt{3})^2}\\\\\tan(165) = \frac{1-2\sqrt{3}+3}{1-3}\\\\\tan(165) = \frac{4-2\sqrt{3}}{-2}\\\\\tan(165) = -2+\sqrt{3}\\\\[/tex]

----------------------

As confirmation, you can use the idea that if x = y, then x-y = 0. We'll have x = tan(165) and y = -2+sqrt(3). When computing x-y, your calculator should get fairly close to 0, if not get 0 itself.

Or you can note how

[tex]\tan(165) \approx -0.267949\\\\-2+\sqrt{3} \approx -0.267949[/tex]

which helps us see that they are the same thing.

Further confirmation comes from WolframAlpha (see attached image). They decided to write the answer as [tex]\sqrt{3}-2[/tex] but it's the same as above.

Ver imagen jimthompson5910
ACCESS MORE
EDU ACCESS