Respuesta :
Answer:
[tex]\displaystyle x = \frac{ln2}{3}[/tex]
General Formulas and Concepts:
Pre-Algebra
- Equality Properties
Algebra II
- Natural logarithms ln and Euler's number e
- Logarithmic Property [Exponential]: [tex]\displaystyle log(a^b) = b \cdot log(a)[/tex]
- Solving logarithmic equations
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle e^{3x} + 6 = 8[/tex]
Step 2: Solve for x
- [Equality Property] Isolate x term: [tex]\displaystyle e^{3x} = 2[/tex]
- [Equality Property] ln both sides: [tex]\displaystyle lne^{3x} = ln2[/tex]
- Rewrite [Logarithmic Property - Exponential]: [tex]\displaystyle 3xlne = ln2[/tex]
- Simplify: [tex]\displaystyle 3x = ln2[/tex]
- [Equality Property] Isolate x: [tex]\displaystyle x = \frac{ln2}{3}[/tex]
Answer:
x = 1/3 ln(2) or approximately 0.23104
Step-by-step explanation:
e^3x+6 =8
Subtract 6 from each side
e^3x+6-6 =8-6
e^3x =2
Take the natural log of each side
ln( e^3x) =ln(2)
3x = ln(2)
divide by 3
3x/3 = 1/3 ln(2)
x = 1/3 ln(2)
x is approximately 0.23104