Respuesta :

Space

Answer:

[tex]\displaystyle x = \frac{ln2}{3}[/tex]

General Formulas and Concepts:

Pre-Algebra

  • Equality Properties

Algebra II

  • Natural logarithms ln and Euler's number e
  • Logarithmic Property [Exponential]:                                                                [tex]\displaystyle log(a^b) = b \cdot log(a)[/tex]
  • Solving logarithmic equations

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle e^{3x} + 6 = 8[/tex]

Step 2: Solve for x

  1. [Equality Property] Isolate x term:                                                                   [tex]\displaystyle e^{3x} = 2[/tex]
  2. [Equality Property] ln both sides:                                                                    [tex]\displaystyle lne^{3x} = ln2[/tex]
  3. Rewrite [Logarithmic Property - Exponential]:                                                [tex]\displaystyle 3xlne = ln2[/tex]
  4. Simplify:                                                                                                             [tex]\displaystyle 3x = ln2[/tex]
  5. [Equality Property] Isolate x:                                                                            [tex]\displaystyle x = \frac{ln2}{3}[/tex]

Answer:

x = 1/3 ln(2) or approximately 0.23104

Step-by-step explanation:

e^3x+6 =8

Subtract 6 from each side

e^3x+6-6 =8-6

e^3x =2

Take the natural log of each side

ln( e^3x) =ln(2)

3x = ln(2)

divide by 3

3x/3 = 1/3 ln(2)

x = 1/3 ln(2)

x is approximately 0.23104

ACCESS MORE